Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(3): e0263627, 2022.
Article in English | MEDLINE | ID: mdl-35320286

ABSTRACT

BACKGROUND: Serological testing for SARS-CoV-2 plays an important role for epidemiological studies, in aiding the diagnosis of COVID-19, and assess vaccine responses. Little is known on dynamics of SARS-CoV-2 serology in African settings. Here, we aimed to characterize the longitudinal antibody response profile to SARS-CoV-2 in Ethiopia. METHODS: In this prospective study, a total of 102 PCR-confirmed COVID-19 patients were enrolled. We obtained 802 plasma samples collected serially. SARS-CoV-2 antibodies were determined using four lateral flow immune-assays (LFIAs), and an electrochemiluminescent immunoassay. We determined longitudinal antibody response to SARS-CoV-2 as well as seroconversion dynamics. RESULTS: Serological positivity rate ranged between 12%-91%, depending on timing after symptom onset. There was no difference in positivity rate between severe and non-severe COVID-19 cases. The specificity ranged between 90%-97%. Agreement between different assays ranged between 84%-92%. The estimated positive predictive value (PPV) for IgM or IgG in a scenario with seroprevalence at 5% varies from 33% to 58%. Nonetheless, when the population seroprevalence increases to 25% and 50%, there is a corresponding increases in the estimated PPVs. The estimated negative-predictive value (NPV) in a low seroprevalence scenario (5%) is high (>99%). However, the estimated NPV in a high seroprevalence scenario (50%) for IgM or IgG is reduced significantly to 80% to 85%. Overall, 28/102 (27.5%) seroconverted by one or more assays tested, within a median time of 11 (IQR: 9-15) days post symptom onset. The median seroconversion time among symptomatic cases tended to be shorter when compared to asymptomatic patients [9 (IQR: 6-11) vs. 15 (IQR: 13-21) days; p = 0.002]. Overall, seroconversion reached 100% 5.5 weeks after the onset of symptoms. Notably, of the remaining 74 COVID-19 patients included in the cohort, 64 (62.8%) were positive for antibody at the time of enrollment, and 10 (9.8%) patients failed to mount a detectable antibody response by any of the assays tested during follow-up. CONCLUSIONS: Longitudinal assessment of antibody response in African COVID-19 patients revealed heterogeneous responses. This underscores the need for a comprehensive evaluation of seroassays before implementation. Factors associated with failure to seroconvert needs further research.


Subject(s)
Antibody Formation , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19 Serological Testing/methods , Ethiopia/epidemiology , Female , Humans , Immunoassay , Longitudinal Studies , Male , Middle Aged , Patient Acuity , Prospective Studies , Seroepidemiologic Studies
2.
EClinicalMedicine ; 39: 101054, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34368662

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in a spectrum of clinical presentations. Evidence from Africa indicates that significantly less COVID-19 patients suffer from serious symptoms than in the industrialized world. We and others previously postulated a partial explanation for this phenomenon, being a different, more activated immune system due to parasite infections. Here, we aimed to test this hypothesis by investigating a potential correlation of co-infection with parasites with COVID-19 severity in an endemic area in Africa. Methods: Ethiopian COVID-19 patients were enrolled and screened for intestinal parasites, between July 2020 and March 2021. The primary outcome was the proportion of patients with severe COVID-19. Ordinal logistic regression models were used to estimate the association between parasite infection, and COVID-19 severity. Models were adjusted for sex, age, residence, education level, occupation, body mass index, and comorbidities. Findings: 751 SARS-CoV-2 infected patients were enrolled, of whom 284 (37.8%) had intestinal parasitic infection. Only 27/255 (10.6%) severe COVID-19 patients were co-infected with intestinal parasites, while 257/496 (51.8%) non-severe COVID-19 patients were parasite positive (p<0.0001). Patients co-infected with parasites had lower odds of developing severe COVID-19, with an adjusted odds ratio (aOR) of 0.23 (95% CI 0.17-0.30; p<0.0001) for all parasites, aOR 0.37 ([95% CI 0.26-0.51]; p<0.0001) for protozoa, and aOR 0.26 ([95% CI 0.19-0.35]; p<0.0001) for helminths. When stratified by species, co-infection with Entamoeba spp., Hymenolepis nana, Schistosoma mansoni, and Trichuris trichiura implied lower probability of developing severe COVID-19. There were 11 deaths (1.5%), and all were among patients without parasites (p = 0.009). Interpretation: Parasite co-infection is associated with a reduced risk of severe COVID-19 in African patients. Parasite-driven immunomodulatory responses may mute hyper-inflammation associated with severe COVID-19. Funding: European and Developing Countries Clinical Trials Partnership (EDCTP) - European Union, and Joep Lange Institute (JLI), The Netherlands. Trial registration: Clinicaltrials.gov: NCT04473365.

3.
PLoS One ; 15(10): e0239342, 2020.
Article in English | MEDLINE | ID: mdl-33027314

ABSTRACT

INTRODUCTION: Tuberculosis disease is the leading cause of death worldwide along with HIV/AIDS. Sputum smear microscopy plays an essential role for initial TB diagnosis and treatment follow up. But, misdiagnosis of sputum smear microscopy revealed a high economical crisis and missing of active TB cases. This study was aimed to determine blinded rechecking of sputum smear microscopy performance in public health facilities in Tigray region, Northern Ethiopia. MATERIALS AND METHODS: A cross sectional retrospective study was conducted from January, 2017 to December, 2018 year. Data was collected retrospectively using electronic and paper based in Tigray health research institute. The data was analyzed using the SPSS version 25 software. The sensitivity, specificity, positive predictive value, and negative predictive value of the smear readings were calculated using 2X2 contingency table. The reading agreement between the microscopic center and reference center was determined using kappa statistics. RESULTS: A total of 23,456 blinded rechecked smear results were reviewed. In average, the performances of sputum smear quality were 61%, 68%, 64%, 66%, 62% and 75% for specimen quality, staining quality, smear size, smear thickness, smear evenness and smear cleanliness respectively. Of the total error (0.48%) reported, 0.25%, 0.19% and 0.085% were false positive, false negative and quantification errors respectively. The concordance rate of health facilities for smear reading was increased to 90% by the end of 2018. Overall, the sensitivity, specificity, PPV, and NPV of the smear readings were 95%, 99.7%, 93% and 99.8% respectively. Likewise, the smear reading agreement was also perfect with kappa value, 0.87. CONCLUSION: The overall performance of public health facilities for blinded rechecking of smear microscopy was satisfactory. But, the high false positive and false negative errors found calls for continuous evaluation and monitoring of the health facilities by reference center.


Subject(s)
Microscopy/methods , Sputum/microbiology , Tuberculosis/diagnosis , Cross-Sectional Studies , Ethiopia , False Negative Reactions , Humans , Microscopy/standards , Quality Control , Retrospective Studies , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...